
How-To Use CREATE DATABASE Statement

Oracle SQL *Plus
Using the CREATE DATBASE SQL statement is a more manual approach to creating a database.
One advantage of using this statement over using DBCA is that you can create databases
from within scripts.

If you use the CREATE DATABASE statement, you must complete additional actions before you
have an operational database. These actions include building views on the data dictionary
tables and installing standard PL/SQL packages. You perform these actions by running the
supplied scripts.

If you have existing scripts for creating your database, consider editing those scripts to take
advantage of new Oracle Database features.

The instructions in this section apply to single-instance installations only. Refer to the Oracle
Real Application Clusters (Oracle RAC) installation guide for your platform for instructions for
creating an Oracle RAC database.

Note:

Single-instance does not mean that only one Oracle instance can reside on a single host
computer. In fact, multiple Oracle instances (and their associated databases) can run on a
single host computer. A single-instance database is a database that is accessed by only
one Oracle instance, as opposed to an Oracle RAC database, which is accessed concurrently
by multiple Oracle instances on multiple nodes.

Complete the following steps to create a database with the CREATE DATABASE statement. The
examples create a database named mynewdb.

Step 1: Specify an Instance Identifier (SID)

Decide on a unique Oracle system identifier (SID) for your instance, open a command
window, and set the ORACLE_SID environment variable. Use this command windows for the
subsequent steps.

ORACLE_SID is used to distinguish this instance from other Oracle Database instances that you
may create later and run concurrently on the same host computer. The maximum number of
characters for ORACLE_SID is 12, and only letters and numeric digits are permitted. On some
platforms, the SID is case-sensitive.

Note:
It is common practice to set the SID to be equal to the database name. The maximum
number of characters for the database name is eight.

The following example for UNIX and Linux operating systems sets the SID for the instance
that you will connect to in Step 6: Connect to the Instance:

• Bourne, Bash, or Korn shell:

 ORACLE_SID=mynewdb
 export ORACLE_SID

• C shell:
 setenv ORACLE_SID mynewdb

The following example sets the SID for the Windows operating system:
set ORACLE_SID=mynewdb

Step 2: Ensure That the Required Environment Variables Are Set

Depending on your platform, before you can start SQL*Plus (as required in Step 6: Connect
to the Instance), you may have to set environment variables, or at least verify that they are
set properly.

For example, on most platforms, ORACLE_SID and ORACLE_HOME must be set. In addition, it is
advisable to set the PATH variable to include the ORACLE_HOME/bin directory. On the UNIX
and Linux platforms, you must set these environment variables manually. On the Windows
platform, OUI automatically assigns values to ORACLE_HOME and ORACLE_SID in the Windows
registry. If you did not create a database upon installation, OUI does not set ORACLE_SID in the
registry, and you will have to set the ORACLE_SID environment variable when you create your
database later.

Step 3: Choose a Database Administrator Authentication Method

You must be authenticated and granted appropriate system privileges in order to create a
database. You can be authenticated as an administrator with the required privileges in the
following ways:

• With a password file

• With operating system authentication

In this step, you decide on an authentication method.

To be authenticated with a password file, create the password file as described in "Creating
and Maintaining a Password File". To be authenticated with operating system authentication,
ensure that you log in to the host computer with a user account that is a member of the
appropriate operating system user group. On the UNIX and Linux platforms, for example, this
is typically the dba user group. On the Windows platform, the user installing the Oracle
software is automatically placed in the required user group.

Step 4: Create the Initialization Parameter File

When an Oracle instance starts, it reads an initialization parameter file. This file can be a text
file, which can be created and modified with a text editor, or a binary file, which is created
and dynamically modified by the database. The binary file, which is preferred, is called a
server parameter file. In this step, you create a text initialization parameter file. In a later
step, you create a server parameter file from the text file.

One way to create the text initialization parameter file is to edit the sample presented in
"Sample Initialization Parameter File".

If you create the initialization parameter file manually, ensure that it contains at least the
parameters listed in Table 2-2. All other parameters not listed have default values.

Table 2-2 Recommended Minimum Initialization Parameters

Parameter Name Mandatory Notes
DB_NAME Yes Database identifier. Must correspond to the value used

in the CREATE DATABASE statement. Maximum 8
characters.

CONTROL_FILES No Strongly recommended. If not provided, the database
instance creates one control file in the same location as
the initialization parameter file. Providing this
parameter enables you to multiplex control files. See
"Creating Initial Control Files" for more information.

MEMORY_TARGET No Sets the total amount of memory used by the instance
and enables automatic memory management. You can
choose other initialization parameters instead of this
one for more manual control of memory usage. See
"Configuring Memory Manually".

For convenience, store your initialization parameter file in the Oracle Database default
location, using the default file name. Then when you start your database, it will not be
necessary to specify the PFILE clause of the STARTUP command, because Oracle Database
automatically looks in the default location for the initialization parameter file.

For more information about initialization parameters and the initialization parameter file,
including the default name and location of the initialization parameter file for your platform,
see "About Initialization Parameters and Initialization Parameter Files".

Step 5: (Windows Only) Create an Instance

On the Windows platform, before you can connect to an instance, you must manually create
it if it does not already exist. The ORADIM command creates an Oracle instance by creating a
new Windows service.

To create an instance:

• Enter the following command at a Windows command prompt:
oradim -NEW -SID sid -STARTMODE MANUAL -PFILE pfile

where sid is the desired SID (for example mynewdb) and pfile is the full path to the text
initialization parameter file. This command creates the instance but does not start it.

Caution:
Do not set the -STARTMODE argument to AUTO at this point,
because this causes the new instance to start and attempt to
mount the database, which does not exist yet. You can
change this parameter to AUTO, if desired, in Step 14.

See the section "Using ORADIM to Administer an Oracle Database Instance" in Oracle
Database Platform Guide for Microsoft Windows for more information on the ORADIM command.

Step 6: Connect to the Instance

Start SQL*Plus and connect to your Oracle Database instance with the SYSDBA system
privilege.

• To authenticate with a password file, enter the following commands, and then enter
the SYS password when prompted:
$ sqlplus /nolog
SQL> CONNECT SYS AS SYSDBA

• To authenticate with operating system authentication, enter the following commands:
$ sqlplus /nolog
SQL> CONNECT / AS SYSDBA

SQL*Plus outputs the following message:
Connected to an idle instance.

Note:

SQL*Plus may output a message similar to the following:
Connected to:
Oracle Database 11g Enterprise Edition Release 11.2.0.1.0 - Production
With the Partitioning, OLAP and Data Mining options

If so, this means that the instance is already started. You may have connected to the wrong
instance. Exit SQL*Plus with the EXIT command, check that ORACLE_SID is set properly, and
repeat this step.

Step 7: Create a Server Parameter File

The server parameter file enables you to change initialization parameters with the ALTER SYSTEM
command and persist the changes across a database shutdown and startup. You create the
server parameter file from your edited text initialization file.

The following SQL*Plus command reads the text initialization parameter file (PFILE) with the
default name from the default location, creates a server parameter file (SPFILE) from the text
initialization parameter file, and writes the SPFILE to the default location with the default
SPFILE name.
CREATE SPFILE FROM PFILE;

You can also supply the file name and path for both the PFILE and SPFILE if you are not
using default names and locations.

Tip:
The database must be restarted before the server parameter
file takes effect.

Note:
Although creating a server parameter file is optional at this
point, it is recommended. If you do not create a server
parameter file, the instance continues to read the text
initialization parameter file whenever it starts.

Important—If you are using Oracle Managed Files and your
initialization parameter file does not contain the CONTROL_FILES
parameter, you must create a server parameter file now so
the database can save the names and location of the control
files that it creates during the CREATE DATABASE statement. See
"Specifying Oracle Managed Files at Database Creation" for
more information.

See Also:

• "Managing Initialization Parameters Using a Server
Parameter File"

• Oracle Database SQL Language Reference for more
information on the CREATE SPFILE command

Step 8: Start the Instance

Start an instance without mounting a database. Typically, you do this only during database
creation or while performing maintenance on the database. Use the STARTUP command with
the NOMOUNT clause. In this example, because the initialization parameter file or server
parameter file is stored in the default location, you are not required to specify the PFILE
clause:

STARTUP NOMOUNT

At this point, the instance memory is allocated and its processes are started. The database
itself does not yet exist.

See Also:

• Oracle Database Concepts for an overview of the
Oracle instance.

• "Managing Initialization Parameters Using a Server
Parameter File"

• Chapter 3, "Starting Up and Shutting Down", to learn
how to use the STARTUP command

Step 9: Issue the CREATE DATABASE Statement

To create the new database, use the CREATE DATABASE statement.

Example 1

The following statement creates database mynewdb. This database name must agree with the
DB_NAME parameter in the initialization parameter file. This example assumes the following:

• The initialization parameter file specifies the number and location of control files with
the CONTROL_FILES parameter.

• The directory /u01/app/oracle/oradata/mynewdb exists.

• The directories /u01/logs/my and /u02/logs/my exist.

CREATE DATABASE mynewdb
 USER SYS IDENTIFIED BY sys_password
 USER SYSTEM IDENTIFIED BY system_password
 LOGFILE GROUP 1 ('/u01/logs/my/redo01a.log','/u02/logs/my/redo01b.log') SIZE 100M BLOCKSIZE 512,
 GROUP 2 ('/u01/logs/my/redo02a.log','/u02/logs/my/redo02b.log') SIZE 100M BLOCKSIZE
512,
 GROUP 3 ('/u01/logs/my/redo03a.log','/u02/logs/my/redo03b.log') SIZE 100M BLOCKSIZE 512

 MAXLOGFILES 5
 MAXLOGMEMBERS 5
 MAXLOGHISTORY 1
 MAXDATAFILES 100
 CHARACTER SET US7ASCII
 NATIONAL CHARACTER SET AL16UTF16
 EXTENT MANAGEMENT LOCAL
 DATAFILE '/u01/app/oracle/oradata/mynewdb/system01.dbf' SIZE 325M REUSE
 SYSAUX DATAFILE '/u01/app/oracle/oradata/mynewdb/sysaux01.dbf' SIZE 325M REUSE
 DEFAULT TABLESPACE users
 DATAFILE '/u01/app/oracle/oradata/mynewdb/users01.dbf'
 SIZE 500M REUSE AUTOEXTEND ON MAXSIZE UNLIMITED
 DEFAULT TEMPORARY TABLESPACE tempts1
 TEMPFILE '/u01/app/oracle/oradata/mynewdb/temp01.dbf'
 SIZE 20M REUSE
 UNDO TABLESPACE undotbs
 DATAFILE '/u01/app/oracle/oradata/mynewdb/undotbs01.dbf'
 SIZE 200M REUSE AUTOEXTEND ON MAXSIZE UNLIMITED;

A database is created with the following characteristics:

• The database is named mynewdb. Its global database name is mynewdb.us.example.com,
where the domain portion (us.example.com) is taken from the initialization file. See
"Determining the Global Database Name".

• Three control files are created as specified by the CONTROL_FILES initialization parameter,
which was set before database creation in the initialization parameter file.

See "Sample Initialization Parameter File" and "Specifying Control Files".

• The passwords for user accounts SYS and SYSTEM are set to the values that you
specified. Beginning with Release 11g, the passwords are case-sensitive. The two
clauses that specify the passwords for SYS and SYSTEM are not mandatory in this release
of Oracle Database. However, if you specify either clause, you must specify both
clauses. For further information about the use of these clauses, see "Protecting Your
Database: Specifying Passwords for Users SYS and SYSTEM".

• The new database has three redo log file groups, each with two members, as specified
in the LOGFILE clause. MAXLOGFILES, MAXLOGMEMBERS, and MAXLOGHISTORY define limits for the
redo log. See "Choosing the Number of Redo Log Files". The block size for the redo logs
is set to 512 bytes, the same size as physical sectors on disk. The BLOCKSIZE clause is
optional if block size is to be the same as physical sector size (the default). Typical
sector size and thus typical block size is 512. Permissible values for BLOCKSIZE are 512,
1024, and 4096. For newer disks with a 4K sector size, optionally specify BLOCKSIZE as
4096. See "Planning the Block Size of Redo Log Files" for more information.

• MAXDATAFILES specifies the maximum number of datafiles that can be open in the
database. This number affects the initial sizing of the control file.

Note:
You can set several limits during database creation.
Some of these limits are limited by and affected by

operating system limits. For example, if you set
MAXDATAFILES, Oracle Database allocates enough space in
the control file to store MAXDATAFILES filenames, even if
the database has only one datafile initially. However,
because the maximum control file size is limited and
operating system dependent, you might not be able to
set all CREATE DATABASE parameters at their theoretical
maximums.

For more information about setting limits during
database creation, see the Oracle Database SQL
Language Reference and your operating system–
specific Oracle documentation.

• The US7ASCII character set is used to store data in this
database.

• The AL16UTF16 character set is specified as the NATIONAL CHARACTER SET,used to store data
in columns specifically defined asNCHAR,NCLOB, orNVARCHAR2.

• The SYSTEM tablespace, consisting of the operating system file
/u01/app/oracle/oradata/mynewdb/system01.dbf is created as specified by the DATAFILE clause.
If a file with that name already exists, it is overwritten.

• The SYSTEM tablespace is created as a locally managed tablespace. See "Creating a
Locally Managed SYSTEM Tablespace".

• A SYSAUX tablespace is created, consisting of the operating system file
/u01/app/oracle/oradata/mynewdb/sysaux01.dbf as specified in the SYSAUX DATAFILE clause. See
"About the SYSAUX Tablespace".

• The DEFAULT TABLESPACE clause creates and names a default permanent tablespace for
this database.

• The DEFAULT TEMPORARY TABLESPACE clause creates and names a default temporary
tablespace for this database. See "Creating a Default Temporary Tablespace".

• The UNDO TABLESPACE clause creates and names an undo tablespace that is used to store
undo data for this database if you have specified UNDO_MANAGEMENT=AUTO in the initialization
parameter file. If you omit this parameter, it defaults to AUTO. See "Using Automatic
Undo Management: Creating an Undo Tablespace".

• Redo log files will not initially be archived, because the ARCHIVELOG clause is not
specified in this CREATE DATABASE statement. This is customary during database creation.
You can later use an ALTER DATABASE statement to switch to ARCHIVELOG mode. The
initialization parameters in the initialization parameter file for mynewdb relating to
archiving are LOG_ARCHIVE_DEST_1 and LOG_ARCHIVE_FORMAT. See Chapter 13, "Managing
Archived Redo Logs".

Tips:

• Ensure that all directories used in the CREATE DATABASE
statement exist. The CREATE DATABASE statement does
not create directories.

• If you are not using Oracle Managed Files, every
tablespace clause must include a DATAFILE or TEMPFILE
clause.

• If database creation fails, you can look at the alert log
to determine the reason for the failure and to
determine corrective actions. See "Viewing the Alert
Log". If you receive an error message that contains a
process number, examine the trace file for that
process. Look for the trace file that contains the
process number in the trace file name. See "Finding
Trace Files" for more information.

• If you want to resubmit the CREATE DATABASE statement
after a failure, you must first shut down the instance
and delete any files created by the previous CREATE
DATABASE statement.

Example 2

This example illustrates creating a database with Oracle Managed Files, which enables you to
use a much simpler CREATE DATABASE statement. To use Oracle Managed Files, the initialization
parameter DB_CREATE_FILE_DEST must be set. This parameter defines the base directory for the
various database files that the database creates and automatically names. The following
statement is an example of setting this parameter in the initialization parameter file:
DB_CREATE_FILE_DEST='/u01/app/oracle/oradata'

With Oracle Managed Files and the following CREATE DATABASE statement, the database creates
the SYSTEM and SYSAUX tablespaces, creates the additional tablespaces specified in the
statement, and chooses default sizes and properties for all datafiles, control files, and redo
log files. Note that these properties and the other default database properties set by this
method may not be suitable for your production environment, so it is recommended that you
examine the resulting configuration and modify it if necessary.
CREATE DATABASE mynewdb
USER SYS IDENTIFIED BY sys_password
USER SYSTEM IDENTIFIED BY system_password
EXTENT MANAGEMENT LOCAL
DEFAULT TEMPORARY TABLESPACE temp
UNDO TABLESPACE undotbs1
DEFAULT TABLESPACE users;

Tip:

If your CREATE DATABASE statement fails, and if you did not
complete Step 7, ensure that there is not a pre-existing
server parameter file (SPFILE) for this instance that is setting
initialization parameters in an unexpected way. For example,
an SPFILE contains a setting for the complete path to all
control files, and the CREATE DATABASE statement fails if those
control files do not exist. Ensure that you shut down and
restart the instance (with STARTUP NOMOUNT) after removing an
unwanted SPFILE. See "Managing Initialization Parameters
Using a Server Parameter File" for more information.

See Also:

• "Specifying CREATE DATABASE Statement Clauses"

• "Specifying Oracle Managed Files at Database
Creation"

• Chapter 17, "Using Oracle Managed Files"

• Oracle Database SQL Language Reference for more
information about specifying the clauses and
parameter values for the CREATE DATABASE statement

Step 10: Create Additional Tablespaces

To make the database functional, you need to create additional tablespaces for your
application data. The following sample script creates some additional tablespaces:
CREATE TABLESPACE apps_tbs LOGGING
 DATAFILE '/u01/app/oracle/oradata/mynewdb/apps01.dbf'
 SIZE 500M REUSE AUTOEXTEND ON NEXT 1280K MAXSIZE UNLIMITED
 EXTENT MANAGEMENT LOCAL;
-- create a tablespace for indexes, separate from user tablespace (optional)
CREATE TABLESPACE indx_tbs LOGGING
 DATAFILE '/u01/app/oracle/oradata/mynewdb/indx01.dbf'
 SIZE 100M REUSE AUTOEXTEND ON NEXT 1280K MAXSIZE UNLIMITED
 EXTENT MANAGEMENT LOCAL;

For information about creating tablespaces, see Chapter 14, "Managing Tablespaces".

Step 11: Run Scripts to Build Data Dictionary Views

Run the scripts necessary to build data dictionary views, synonyms, and PL/SQL packages,
and to support proper functioning of SQL*Plus:
@?/rdbms/admin/catalog.sql
@?/rdbms/admin/catproc.sql
@?/sqlplus/admin/pupbld.sql
EXIT

The at-sign (@) is shorthand for the command that runs a SQL*Plus script. The question mark
(?) is a SQL*Plus variable indicating the Oracle home directory. The following table contains
descriptions of the scripts:

Script Description
CATALOG.SQL Creates the views of the data dictionary tables, the dynamic

performance views, and public synonyms for many of the
views. Grants PUBLIC access to the synonyms.

CATPROC.SQL Runs all scripts required for or used with PL/SQL.
PUPBLD.SQL Required for SQL*Plus. Enables SQL*Plus to disable

commands by user.

Step 12: (Optional) Run Scripts to Install Additional Options

You may want to run other scripts. The scripts that you run are determined by the features
and options you choose to use or install. Many of the scripts available to you are described in
the Oracle Database Reference.

If you plan to install other Oracle products to work with this database, see the installation
instructions for those products. Some products require you to create additional data
dictionary tables. Usually, command files are provided to create and load these tables into the
database data dictionary.

See your Oracle documentation for the specific products that you plan to install for installation
and administration instructions.

Step 13: Back Up the Database.

Take a full backup of the database to ensure that you have a complete set of files from which
to recover if a media failure occurs. For information on backing up a database, see Oracle
Database Backup and Recovery User's Guide.

Step 14: (Optional) Enable Automatic Instance Startup

You might want to configure the Oracle instance to start automatically when its host
computer restarts. See your operating system documentation for instructions. For example,
on Windows, use the following command to configure the database service to start the
instance upon computer restart:
ORADIM -EDIT -SID sid -STARTMODE AUTO -SRVCSTART SYSTEM [-SPFILE]

You must use the -SPFILE argument if you want the instance to read an SPFILE upon
automatic restart.

Courtesy: https://docs.oracle.com/cd/E18283_01/server.112/e17120/create003.htm

Modified: 2021.10.09.11.18.AM

Dököll Solutions, Inc.

https://docs.oracle.com/cd/E18283_01/server.112/e17120/create003.htm

	Step 1: Specify an Instance Identifier (SID)
	Step 2: Ensure That the Required Environment Variables Are Set
	Step 3: Choose a Database Administrator Authentication Method
	Step 4: Create the Initialization Parameter File
	Step 5: (Windows Only) Create an Instance
	Step 6: Connect to the Instance
	Step 7: Create a Server Parameter File
	Step 8: Start the Instance
	Step 9: Issue the CREATE DATABASE Statement
	Step 10: Create Additional Tablespaces
	Step 11: Run Scripts to Build Data Dictionary Views
	Step 12: (Optional) Run Scripts to Install Additional Options
	Step 13: Back Up the Database.
	Step 14: (Optional) Enable Automatic Instance Startup

